
MATH2050C Assignment 8

Deadline: March 18 , 2025.

Hand in: 4.3. no. 5ab, 11; Supp. Ex. 1, 5, 8.

Section 4.2 no. 11cd, 12; Section 4.3 no. 3, 4, 5abedh, 8, 11.

Supplementary Problems

1. Find the limits of x3e−x where c = −∞, 0 and ∞ as x → c.

2. Show that limx→c sinx = sin c .

3. Show that x− x3

6 ≤ sinx ≤ x, for x ∈ [0, 1] and deduce limx→0
sinx
x = 1.

4. Find limx→0 sin 6x/ sin 5x.

5. Find the limit of
√
(x+ a)(x+ b)− x as x → ∞. Here a, b > 0.

6. Evaluate

lim
x→−3

x2 − 2x− 15

x+ 3
.

7. Evaluate

lim
x→∞

cos 1/x

x
.

8. Find limx→c
5x−

√
x√

x− x3
for c = 0+ and ∞.

See next page
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Further Comments on Limits of Functions

First, we have studied limits of functions. For polynomials and rational functions, their limits
are well understood. Indeed, let r(x) = p(x)/q(x) be a rational function. We knew (1) it is
well defined on the set E = {x ∈ R : q(x) ̸= 0}, (since a polynomial has at most finitely many
roots, E is the union of finitely many open intervals.) (2) limx→c r(x) = r(c) whenever c satisfies
q(c) ̸= 0. (Before the evaluation it is better to make sure that p are q are reduced, that is, they
do not have common factor.)

In order to have more examples to work on, we need to introduce more functions. In this chapter
the following functions are studied:

� The square root f1(x) =
√
x. It is defined on [0,∞) and limx→c

√
x =

√
c for all c ≥ 0.

� The (rational) power f2(x) = xm/n. Generalizing the square root, it is known from the
last chapter that for each x ≥ 0, there is a unique y ≥ 0 satisfying yn = x. We write
y = x1/n the n-th root of x. Then xm/n = (x1/n)m, x ∈ [0,∞), is well-defined for all
n,m ∈ N. We also define x−m/n = 1/xm/n. The square root function is a special rational
power. We have the following general result: Let f be a non-negative function on A and
c is a cluster point of A. Then

lim
x→c

f(x)m/n = f(c)m/n.

� The absolute value function f3(x) = |f(x)|. It is defined on (−∞,∞) and

lim
x→c

|f(x)| = |f(c)| ,

for all c ∈ R.

� The exponential function f4(x) = E(x), x ∈ R. The exponential function is defined to
be the limit E(x) = limn→∞(1 + x/n)n which was proved to exist previously. It is equal
to

E(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · .

We have
lim
x→c

E(x) = E(c) ,

for all c. We provide a proof of this limit. In the following we adapt the common practise
to express E(x) as ex, although we have only shown this is valid for rational x. First,∣∣∣∣∣ex −

n∑
k=0

xk

k!

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

xk

k!

∣∣∣∣∣ = xn+1

(n+ 1)!

∣∣∣∣1 + x

n+ 2
+

x2

(n+ 3)(n+ 2)
+ · · ·

∣∣∣∣ .

Therefore, for x, |x| ≤ M = |c|+ 1, we fix m such that M/(m+ 2) ≤ 1/2,∣∣∣∣∣ex −
m∑
k=0

xk

k!

∣∣∣∣∣ ≤ Mm+1

(m+ 1)!

(
1 +

M

m+ 2
+

M2

(m+ 2)2
+

M3

(m+ 2)3
+ · · ·

)
≤ 2Mm+1

(m+ 1)!
.

By the ratio test we see that Mm+1/(m+ 1)! → 0 as m → ∞. For ε > 0, we can further
assume m so large that 2Mm+1/(m+1)! < ε/3. On the other hand, let p(x) =

∑m
k=0 x

k/k!.
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As limx→c p(x) = p(c), for ε > 0, there is some δ such that |p(x)−p(c)| < ε/3 for |x−c| < δ.
Putting things together, we have

|ex − ec| = |ex − p(x) + p(x)− p(c) + p(c)− ec|
≤ |ex − p(x)|+ |p(x)− p(c)|+ |p(c)− ec|

<
ε

3
+

ε

3
+

ε

3
= ε .

� The sine function f5(x) = sinx, x ∈ R. Here the sine function is given by the formula

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
+ · · · .

Just like in the case of E(x), one can show that this infinite series is convergent for every
x. Similar to the exponential function, we have limx→c sinx = sin c for all c. Moreover,
we have the inequality x− x3/6 ≤ sinx ≤ x for 0 ≤ x ≤ 1 which implies

lim
x→0

sinx

x
= 1 .

� The cosine function f6(x) = cosx, x ∈ R. Here the cosine function is given by the
formula

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
+ · · · .

One can show limx→c cosx = cos c and

lim
x→0

cosx− 1

x
= 0 ,

or more precisely,

lim
x→0

cosx− 1

x2
= −1

2
.

Second, variations on the notion of limits of functions including one-sided limits, divergence
at infinity and limits at infinity. Let f be function defined on (a, b]. It is said to tend to
∞ (resp. −∞) at a (from its right) if for each M > 0, there is some δ > 0 such that
f(x) > M (resp. f(x) < −M) for all x ∈ (a, a + δ). The notation is limx→a+ f(x) = ∞
(resp. limx→a+ f(x) = −∞). Similarly, one can define limx→b− f(x) = ±∞ (limit from the
left). For f defined on (a,∞) (resp. (−∞, b)) we can define limx→∞ f(x) = L if for each
ε > 0 there is some K > 0 such that |f(x) − L| < ε for all x > K. Similarly, we can define
limx→−∞ f(x) = L, limx→∞ f(x) = ±∞, limx→−∞ f(x) = ±∞, etc. For these variations
of limits of functions, the corresponding Sequential Criterion, Limit Theorems, and Squeeze
Theorem are for you to explore, or simply look up the text book.


